
Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 1

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

http://jates.org

Journal of Applied
Technical and Educational Sciences

 jATES

ISSN 2560-5429

Testing of xtUML Models across Auto-Reflexive Software

Architecture

Zdeněk Havlice 1, Veronika Szabóová 2, Branislav Madoš 1

1 Department of Computer Science and Informatics, Faculty of Electrical Engineering and Informatics, Košice

04011, Slovak Republic, zdenek.havlice@tuke.sk, branislav.mados@tuke.sk

2 R-SYS s.r.o., Rybárska 7389, 911 01 Trenčín, Slovak Republic, veronika.szaboova@r-sys.sk

Abstract: Application of MDA in the software development enables a synchronization of the

system models and corresponding source files used for the building of the executable version

of a software system. Because of often use of manual modifications of some parts of code

without equivalent changes in connected models, there is no guarantee that the output of the

process of building of the target application will be consistent with the relevant design and

implementation models. Possibility of generating of the source files from the models is a

necessity, but not a sufficient condition in the process of development and modification of

software systems synchronously with the changes in all related models. More safe approach is

building the target application with the use of an automated building process with nested steps

for consistency verifications of all critical models and related source files and the usage of

model compilers. This article describes the use of xtUML and OAL for extending the software

process of building the target system using special files with specification of dependencies

between models and source files. Such dependencies represent the core of the critical

knowledge, and it is possible to make this knowledge an integral part of the proposed new

software architecture.

Keywords: Auto-Reflexive Software Architecture; Model Driven Architecture; Model-Driven

Maintenance; xtUML; OAL; software maintenance metrics

 Introduction

Among the serious problems of the currently used software systems (SwS) belongs small

efficiency, reliable and conversely great expense of the processes dealing with maintenance,

protection, and in particular of modifications, extensions, repairs of detected errors, innovations

based on new technologies and integration with other SwS (Wuerthinger, T. et al., 2011).

Methods and tools for development of effectively maintainable software systems are subject of

many current research activities. The concept of sustainable software systems was introduced

(Robillard, M. P., 2016). Most of the problems in these post-project processes relate to the weak

or insufficient usability of knowledge about design of SwS and knowledge related to the

application domain (AD), in which the SwS is used, especially after longer period of the system

https://doi.org/10.24368/jates310
http://jates.org/
mailto:zdenek.havlice@tuke.sk

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 2

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

usage. Successful SwS is evolving and the changes in the system are making it difficult for the

developers to find a suitable knowledge necessary for the future changes (Fritz, T. et al., 2014).

There is current research and experimental use of many different approaches for these problems

solving (Kovari 2020) e.g. based on timed automata models (Weins, D., Iftikhar, U. M., 2022),

use of rule-based languages for model transformations after changes (Rodriguez-Echevaria et

al., 2022).

This paper presents the way how to solve the problem of understanding large and/or complex

SwS for maintenance or by other words how to develop effectively sustainable systems with

use of xtUML- eXecutable Translatable UML (xtUML, 2015), OAL – Object Action Language

(OAL, 2015) and ARSA - Auto-Reflexive Software Architecture (Havlice, Z., 2009, 2013,

2014), (Rajnak, B., 2015).

This problem can be solved with:

1. Preparing special file/files containing critical knowledge about SwS for their maintenance.

We can consider these files as special knowledge layer (KL) - an auto-reflexive knowledge

about SwS.

2. Integrating KL into software package so that each building of new version of the system will

use this KL. Special architecture of SwS with a knowledge layer – ARSA can be used for this

purpose.

3. Updating this layer continuously during the preparation of the new version of SwS and

consistently with new version of SwS.

This paper contributes to the methods for development of sustainable SwS in the following

way:

- by the proposal of extension of the MDA concept with processes of KL creation, usage

and modification (KL is related to SwS design/implementation domain and SwS

application domain, KL is integrated in architecture of the SwS with use of architecture

ARSA),

- by the proposal of the software maintenance metrics for measuring reliability and

efficiency of the software modification,

- by the case of study for suitability the above concept for maintenance of example SwS

while applying ARSA with knowledge suitable for generating of the consistency tests

with the use of the proposed metrics.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 3

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

The goals are:

1. The usage of MDSE (Model Driven Software Engineering) including MDA (Model

Driven Architecture), MDG (Model Driven Generation) and related paradigms,

methods, and tools for creating models representing critical knowledge about SwS

(critical models).

2. The integration of critical models into the knowledge layer in new ARSA software

architecture. The usage OAL for implementation of KL, which can be used for

generating consistency tests. Measurement of the rate of MDSE utilization for the

integration of critical models into KL is based on measurement of the share of utilization

of model transformations based on MDA, reverse engineering, forward engineering, and

round-trip engineering the in the process of creating of KL and integration KL into

ARSA.

3. Experimental implementing simple mobile application example with KL in ARSA

for safe and effective modifications and corrections of this application. Effective

modifications and corrections are based on testing and ensuring consistency of the

architecture across different layers of abstraction such as models, generated source code

and the resulting executable code.

4. Proposal of the metrics to measure of reliability and efficiency of software

modification described in section 2.6 and use of these metrics for the assessment of our

experiment with ARSA is in Section 4.5.

Besides main goals mentioned above, we also focus on the autonomic computing system

development (Bocciarelli, P. et al., 2015) using ARSA. We dedicate our example application

to this point of interest, and we would like to answer the following three research questions

while implementing ARSA for our autonomic system instrumentation:

RQ1. Does the auto-reflection implementation with ARSA work usefully?

RQ2. Does the application of the methodology of ARSA define any limitations on the

developed autonomic system?

RQ3. Do we need to change ARSA in any way to allow the autonomic system

development?

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 4

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Although we have used a small example of autonomic software for the experiment with ARSA,

we do not focus on the methodology and the tools for development of the autonomic software

systems, but we focus on the methodology and the tools for SwS development with constantly

available, consistent on-line documentation containing models of critical properties of SwS that

are suitable for system maintenance.

The autonomy (independence) of systems from the point of view of our design solution is

limited to the autonomous use and maintenance of critical knowledge of the current version of

the system by software itself (self - reflexion) in a form that allows effective and reliable

maintenance.

The self - reflexion of the software system can be defined as the ability of SwS to have/

recognize the information and to be able to use the information about its own structure,

behaviour, internal and external relations to improve software processes. Auto - reflexion is a

necessity but not a sufficient prerequisite for the autonomy of the systems.

We do not focus on improving the testing methods, but the use of documentation testing (current

models) and the system version to ensure the consistency of the system documentation and the

system version in use. The consistency of system documentation and the current executable

version of the system is a necessity, but not sufficient prerequisite for self-reflexing of systems

(it needs implemented methods for maintaining this consistency). Our aim is to improve the

quality of target SwS from viewpoint of its maintainability. We want to achieve the improving

of the quality by integrating the self-reflective KL into the SwS installation package and by

using implemented methods for maintaining the consistency between KL and currently used

SwS. The paper is structured as follows:

Section 2 of the paper is discussing the conditions under which there is a possibility for

implementation of the ARSA with suitable standards, methods, and tools. Reliability and

efficiency of software processes of SwS modifications are defined and extension of the UML

language is introduced via executable and translatable UML (xtUML, 2015) and Object Action

Language (OAL, 2015). Weak places of the classical MDA approach are named and the

knowledge - based software architecture (KBSA) that can be used to address these issues with

introduction of the Knowledge Layer (KL) that can be the basis for the ARSA is proposed. The

last part of this section of the article is discussing the knowledge - based approach to the

software architecture (SA) and summarizes the frequency of studies which are dealing with

different processes in which the knowledge - based approach is used.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 5

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Section 3 of the paper includes the description of the implementation of the knowledge layer

into the ARSA with use of the xtUML, which is proposed within this research. Special attention

is paid to the description of the data flows and the description of the processes which are

involved in transformations of UML models into the target architectures with the use of defined

sets of templates and predefined translation rules.

Section 4 of the paper describes experimental implementation of the knowledge layer within

the ARSA architecture via the use of xtUML). BridgePoint as the Integrated Development

Environment (xtUML, 2015) and its use in the knowledge layer generation and consistency

tests generation is also described. To point out the efficiency and the reliability of ARSA

process application, we present our measurement results on these properties.

Section 5 of the paper represents conclusions and describes achievements of the research and

outlines its future direction.

 Conditions for ARSA implementation

This section discusses conditions under which there is a possibility for implementation of the

ARSA with suitable standards, methods, and tools.

2.1. xtUML in MDA - Benefits

There is possible to identify the following benefits of using xtUML in MDA (xtUML, 2015):

- separation of concerns,

- executable and testable models,

- clear and unambiguous models,

- early integration,

- component based,

- reuse,

- accelerated development life cycle,

- manageable lightweight development process,

- scalable, proven, industrial-strength process,

- resilience to change,

- 100% code generation from models,

- no redundancy,

- fully configurable code generation,

- higher quality generated software,

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 6

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

- reduced life cycle cost.

2.2. Suitable standards, methods and tools

There are three important assumptions for the effective implementation of ARSA for

the use in the processes of the software systems modifications (Rajnak, B., 2015):

- Software design approach based on Model-Driven Architecture (MDA) (OMG, 2015) -

based on the use of Computation Independent Model (CIM), Platform Independent Model

(PIM), Platform Specific Model (PSM). These models can be used as the resource of

important knowledge about structure and behavior of software system in the process of

effective and reliable re-building of new version of the system after making any

modifications and/or extensions of this system.

- Executable and translatable UML suitable for simulation of modeled systems and forward

engineering (Mellor, S. J. and Balcer, M. J., 2002).

- Suitable CASE tools with implemented executable and translatable UML (e. g. BridgePoint

based on Eclipse with xtUML) (xtUML, 2015).

CIM allows modeling of the target system with focusing on the user requirements from

viewpoint of the application domain without stating details about how to achieve expected

services with algorithms, data and processes and without focusing to the required IT tools,

systems and implementation details. These models can represent important knowledge about

the services: information structure of the data input/output, stored (internal) data, services, and

external structure of the system from the viewpoint of the users of these services (Dukan 2013).

This knowledge can be used for:

- consistency testing between modeled information structure of the input, output and

internal data of the services and implementation of this structure in the source files of

the target system,

- generating suitable PIMs (transformation of CIM into PIM).

PIM allows for modeling the software architecture focused on algorithms, data structures,

processes, restrictions, rules, and so on, which have no dependency on the target platform.

These models can represent important knowledge about dynamic and static properties of the

target system, expected inputs, outputs, timing, control and so on, i. e. all properties that are

independent on the implementation environment. PIM therefore can be used for generating

(Porkolab and Sinkovics, 2011) of the tests for verification of future implementations and for

next automated transformation to suitable PSM.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 7

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

PSM represents use of the platform specific models that are modeling software or business

systems in connection with specific hardware or software platforms, e. g. servers with specific

architectures, instruction set architectures (ISA) of microprocessors, operating systems (OS),

database-management systems (DBMS), programming languages (Sinkovics and Porkolab,

2013), document file formats etc. The platform specific viewpoint provides a view of a system

in which platform specific details are integrated with the elements in a PIM (France and Rumpe,

2007). PSM therefore can be seen as the PIM adapted to the specific hardware and/or software

platform.

The concept of the PIM adaptation to the PSM is supplemented with the possibility of the usage

of Model Transformation Languages (MTL) (Mens and Gorp, 2006; Edwards and Gruner,

2013), which allows to transform Platform Independent Models into the Platform Specific

Models. The example of MTL implementation can be seen in AndroMDA framework, which

is open source code generation platform (application of the AndroMDA in the development of

multi-agent systems is described in (Maalal and Addou, 2011), VIATRA framework that

supplies transformation language and also Event-Driven Virtual Machine (EVM) (Bergman et

al., 2015), or in ATL Transformation Language (ATL) (Jouault et al., 2008; Jouault and Kurtev,

2006) that is developed by OBEO and INRIA and provides the transformation of source model

sets into the target model sets. ATL is also supported by the ATL Integrated Development

Environment (IDE) built on top of the Eclipse platform. In specific cases, several advantages

could be achieved by using trace-based Just-In-Time (JIT) (Haeubl et al., 2014) compilation in

machine code generation.

2.3. Executable UML

Modeling language UML itself has no tools for the simulation of the behavior of the systems

described using UML models (Jouault et al., 2014). Extension based on the action semantics,

that would make behavioral models (Sarjoughian et al., 2015) directly translatable and

executable, can be used not only for the purpose of the simulation but also for the generating

source code. The eXecutable Translatable Unified Modeling Language (xtUML) is such

suitable extension of UML for more effective software processes. Action semantics is in the

xtUML defined with the action language – Object Action Language (OAL) (OAL 2015). It is

possible to use the OAL to specify the action semantics of such behavioral elements of UML

comprising states, transitions, events etc. The xtUML models can be, according to the MDA

paradigm (Mellor and Balcer, 2002; OMG, 2015), translated from PIM level into PSM and then

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 8

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

to the source code of the target platform. This translation is based on a set of transformation

rules and templates (Mellor and Balcer, 2002).

On the market, there are several tools supporting usage of xtUML in the above-described

processes of software development. One of them is the BridgePoint tool (xtUML, 2015), which

one is an integrated development environment including xtUML editor, verifier of models,

model compiler, and the possibility to define semantics of models and to extend the process of

compiling with use of OAL.

2.4. MDA and the modification of the software systems

Classical approach applying MDA (see Fig. 1) has two weak places from the viewpoint of

reliability and efficiency of the software process oriented to modification, extension and/or

correction of the existing version of the software system in the maintenance phase of the

software life cycle (Mezghani et al., 2013; Lahiani and Bennouar, 2015):

1. Some modifications of the models on the higher level of abstraction, which are

affecting other model(s) and/or parts and are extending these influences, cannot be

realized automatically. Well-done consistency verification and finding of all

problematic places in the models and the source files is required in this situation.

For example: inserting of new methods and/or attributes into the class without their

use (some artifact is defined, but not used), extending of use-case diagram with new

use-cases without implementing them with use of some communications and/or

processes (some artifact is defined, but not implemented) and so on.

2. Some modifications of the models on the lower level of abstraction are realized

sometimes or source files are changed directly in some programming language,

without doing any consequent changes in the dependent models. These models will

become useless in next modifications of the target system after such inconsistent

modifications of the models.

These weak places have influence on growing the gap between the models (documentation of

the system) and target application (executable system) after hand-made modification of source

files and/or after changes in some models without synchronizing these changes with other

dependent models (see Fig. 1).

Software architecture with layer of knowledge (knowledge layer, KL) can be named knowledge

- based software architecture (KBSA) (Havlice, 2013) and can be used to address these issues.

The knowledge layer in the KBSA can consist of auto-reflexive knowledge about structure,

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 9

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

behavior, design decisions, and external context of the system itself and other critical

knowledge about the system and its surroundings (Havlice, 2013; 2014; 2009; Rajnak, 2015] –

this architecture will be auto - reflexive software architecture (ARSA).

KL can be integrated into the software architecture on the source code level and/or even on the

executable level in the suitable coded form.

KL on the source code level can be used for testing (verifying) the consistency (Khan et al.,

2013) of the architecture, properties, and behavior from higher level to lower level of

abstraction, between different levels of models and the source files after extensions, changes

and repairs of SwS (Polák and Holubová, 2015). Critical models stored in KL are mandatory

part of the install packages of the system and will be used in the make process for the building

new version of the target system consistent with all critical models.

KL on the target code level (executable level) can be used for visualization of architecture of

the system in run-time, localization of critical parts (modules, components, functions, objects

etc.) of the currently used software system from different viewpoints (for example security

risks, response time, availability of services, efficiency etc.) (Havlice, 2013).

The use of all accessible knowledge about the entire architecture and behavior of the system

could be a rather difficult and not effective for the integration into ARSA. Only critical

knowledge represented with the critical models therefore we can select, which have the most

significant impact on the functionality of the system. This will simplify this integration process

in the case of more complex architectures and can increase the efficiency and the reliability of

the software maintenance processes.

2.5. Knowledge based approaches to software architectures

A systematic mapping study of the application of the knowledge based (KB) approaches in

software architectures (SA) was conducted by Li, Liang and Avgeriou in (Li et al., 2013]. This

work was based on the analysis of fifty-five studies and concluded that knowledge - based

approach has a rising trend between years 2000 and 2011. According to the two previous studies

(Liang and Avgeriou, 2009; Tang et al., 2010) the study classified KB approaches to the five

categories comprising the Knowledge Capture and Representation (KCR) – which means the

extraction of knowledge from the source codes or acquisition from stakeholders and its

representation in the form that is usable by human or it is possible to process it automatically,

Knowledge Reuse (KR) – which represents application of knowledge in various contexts,

Knowledge Sharing (KS) – which represents sharing of knowledge in participating community,

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 10

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Knowledge Recovery (KRv) – which represents recodification of knowledge from tacit

knowledge, and Knowledge Reasoning (KRs) – which represents production of new knowledge

by the process of conclusions making and deriving new knowledge via inference. They

considered all these studies according to the particular knowledge - based approach to the

software architecture as it is shown in Fig. 2.

Fig. 1. Classical MDA approach in software life cycle with use of CASE system (Havlice,

2013)

Fig. 2 Number of studies out of fifty-five considered according to the particular knowledge -

based approach to the software architecture (Li et al., 2013)

0

20

40

60

KCR KR KRs KS KRv

42

16
11

5 3

Analysis/Design

use of CASE tools

PDb of CASE

System

Deployment

& Linkers & Virtual

Source files

Implementation

use of MDA Tools

Target Application

automated changes

interactive

changes

growing

 gap

translation rules target platform

template files

external components,

libraries, services

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 11

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Software life cycle based on ARSA includes application of these knowledge-based approaches:

KCR - critical models are coded and stored in KL,

KR - knowledge stored in KL is reused in model driven maintenance (MDM), in processes

of model driven monitoring (MDMon) and model driven modifying (MDMod) - see

Section 3 for evidence,

KRs - production of new knowledge based on actual knowledge stored in KL and results of

MDMod of system,

KS - sharing of knowledge stored in KL in participating community.

2.6. Proposal of metrics for reliability and efficiency of software modification

The possibility of using automated transformations between the 3 levels of models CIM-PIM-

PSM on code generating is very important for reliability and efficiency in software engineering

processes of modification of SwS based on MDA.

It is possible to define the reliability of software process of modification of SwS (Rm) with the

use of the following formula:

Rm = Nm / (Nm + e * Nni) * 100 [%] (1)

where:

Nm is the number of modified artifacts of SwS,

Nni is the number of artifacts of SwS negatively influenced with realized modification,

e is coefficient of elaborateness of corrections for all negatively influenced artifacts.

Artifact of SwS in the above-described formula is any structural or behavioral part of SwS on

the same level of abstraction used in Nm and Nni (it can be for example service from viewpoint

of the user, class from viewpoint of design, or line of code in programming language from the

viewpoint of implementation).

The coefficient of elaborateness of corrections for all negatively influenced artifacts is an

empirical value, which can be discovered by analyzing the software development processes,

namely comparing the number of the identified negative influences and the real ones.

The reliability of modification is 100%, if the modification of specified artifact of target system

has no negative influence for properties and behavior of any other artifacts of the system.

Reliability of modification process declines with the increasing number of induced new errors.

Efficiency of software process of modification of SwS (Em) we can simply define like this:

Em = Nam / (Nmm + Nam) * 100 [%] (2)

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 12

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

where:

Nam is number of automated modifications of artifacts of SwS with use of generating code

from models,

Nmm is number of artifacts of SwS, which need manual modifications realized by

programmer.

Artifact of SwS in this formula can be the same as in previous definition of Rm. The efficiency

of modification is 100%, if the modification of the specified artifact of target system needs no

additional manual modification in source files in the same and/or other artifacts. Efficiency of

modification process goes down with increasing number of needed manual corrections.

 Implementing ARSA with Use of Executable and Translatable UML

MDA approach can be used for KL integrating into ARSA on the source code level and also

can be used for assembling of the target software system by using model compilers (generator

engines) with automated transformations of the PIM from a higher level of abstraction to a

lower level and finally to source files in suitable programming language (PSM).

This MDA approach is based on transformations of UML models across different levels of

abstraction into source files and these transformations are defined by the sets of templates and

predefined translation rules as shown in Fig. 3 (Havlice, 2013; Rajnak, 2015). The models are

created in CASE system and stored in project database (PDb).

Such transformations processes altered by modifying rules and/or templates and can be also

applied automatically with consistency checking for all critical models stored in KL on the level

of source files.

Description of the dataflows in Fig.3:

1. Feedback from the monitoring of the system in maintenance processes for system

& software engineers (diagnostics and error messages, warnings, indications of error

states and critical conditions).

2a. New requirements (user and system requirements for corrections, changes,

modifications, extensions, integrating).

2b. Information about the inconsistency found between critical models (CIM, PIM)

(dataflow 3a) and implementations (PSM) (dataflow 4a).

3a. Critical CIM and PIM models from KL (source level).

3b. New CIM and PIM models modified and synchronized between each other and with

the implementation level.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 13

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

4a. Implementation of the software system (critical PSMs, source files, components,

services, libraries).

4b. New implementation of the software system (critical PSMs, source files,

components, services, libraries).

5. Feedback from the monitoring of the system in maintenance process - input data for

the automated modification of models and implementations in maintenance process

(coded data from diagnostic and error messages, warnings, indications of error states

and critical conditions).

6a. Additional information about critical CIM and PIM from PDb.

6b. Actualized additional information about critical CIM and PIM from PDb.

7a. New CIM and PIM models - input for generating PSM (transformations CIM-PIM-

PSM).

7b. New generated PSM.

8. Critical CIM and PIM models from KL (executable level) for visualization in

runtime.

Fig. 3 Generating and use of ARSA based on MDA and executable UML (Havlice, 2013)

automated

changes

Analysis/Design

Use of CASE System

PDb

Project Database

MDM

5 4a

3a

7b

6a

MDMake

Application

(Source artifacts)

Target Application

MDMon

Viewing models

interactive changes with automated support

MDCom

Use of Model Compilers

translation

rules
target platform

template files

MDMod

Forward

Engineering

3b

4b

6b

7a

2a

2b

1

8

template files

for generating

KL (source level)

KL (executable level)

external components,

libraries, services

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 14

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Description of the processes in Fig.3:

Model Driven Maintenance (MDM) - software process which uses suitable analysis /design/

implementation models, which are synchronized with the maintained system. These models

could be a representation of the concentrated knowledge about the system, and they can be used

for improving of the maintenance activities (Kunstar et al., 2009a).

Consistency Testing I (CTestI) - testing existing dependences between the models (CIM, PIM,

PSM) in the same level of abstraction and between the models in the different level of

abstraction (if transformation between them was realized not exclusively with model

compilers).

Consistency Testing II (CTestII) - testing existing dependences between critical models (PSM)

stored in KL and source files (if transformation between them was realized not only solely and

exclusively with model compilers).

Model Driven Modifying (MDMod) - modification of artifacts of target system with use of

models and model compilers. Modifications are realized by top-down approach from models

on the highest level of abstraction to models on the lower level of abstraction.

Model Driven Monitoring (MDMon) - use of models from KL and their visual representation

for monitoring critical aspects of monitored system.

Model Driven Compiling (MDCom) - use of model compilers for transformation between CIM-

PIM-PSM, for Consistency Testing I, for generating source files from PSM and for generating

of KL on the source level.

Model Driven Make (MDMake) - assembling target application with use of model compilers

for generating source files from PSM, with use of tests for Consistency Testing II and

consistency testing between dependent source files, object files, libraries, services, use of

compilers of programming languages and linkers for linking and with generating of KL on the

executable level.

 Experimental Implementation of ARSA

BridgePoint is an integrated development environment including xtUML editor, verifier of

models, model compilers (xtUML, 2015) and possibility to define semantics of models and to

extend process of compiling with use of OAL. This environment was used as suitable CASE

system for experimenting with KL for ARSA.

For the different kinds of existing SwS properties, we found the following options:

- Structural properties of SwS can be modeled in xtUML with use of

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 15

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

o component diagram (COMPD) - for modeling components and their interfaces

o class diagram (CLAD) - for modeling classes of objects existing in the

components of the system.

- Behavioral properties of SwS can be modeled with use of state machines

o state transition diagrams (STAD) for classes of objects with transitions between

states based on signals or events.

These three types of diagrams were used for modeling the critical knowledge about the structure

and the behavior of the demo SwS. These diagrams were coded into KL with use ofXMI. This

KL was integrated with all source files of the demo into one package.

4.1. Preparation

We specified the following details during the experiment preparation:

1. Storing knowledge in text form has helped automate the processing of all the facts, as

structured by the native output of the compiler used. The XML format used by the

generator of the source code of the model was used to compare two successive models,

such that differences in the case of a simple mechanism for self-reflection notify a

warning that changes have been made in the system since the last compilation. For

completeness, notices are accompanied by all the details of the changes found.

2. The process of generating the system overwrites the old files in the directory specified

for the new system, therefore, as by (Rajnak, 2015) we added custom directory and

modified scripts designed by the author of (Rajnak, 2015) to operate and serve their

functionality according to our expectations. The change was especially important

because the original scripts were not recognized by the current version of the

development system.

3. Although we had several choices such as txtUML (Dévai et al., 2014; Gregorics et al.,

2015), it was chosen the development system, which consists of the development

environment BridgePoint xtUML, whose core (Eclipse) was supplemented with

additional plug-ins for requirements representation on the developed system.

4. We had to add to the directory structure of files OAL model compiler scripts that

represent logic and share knowledge creating layers and consistency tests.

5. Consistency check is based on the definition of critical models as UML component

diagrams, class diagrams and state transition diagrams.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 16

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

4.2. Knowledge Layer Generation

Template for generating KL in XMI is part of templates of the KL Generator. One part of all

algorithms of the KL Generator implemented in OAL and representing generating XMI only

for all components from COMPD is described in Fig. 4.

The short source code in Fig. 4 is aimed to create the XMI files of the KL, which ones are the

basis of consistency test generation. As these exist in parallel to the consistency tests, we

consider them as one copy of total two instances of the KL. This redundancy is used to increase

the safety of the KL.

Fig. 4 Part of OAL template for generating KL in XMI for components from COMPD

(Rajnak, 2015)

To include all implementation specific assets stored within the COMPD, the above script

compiles to the resulting KL OAL statements used to describe the behavior of states in state

machines and to describe the actions in activity diagrams as well. An example of XMI

representation of such generated KL for the demo SwS is shown in Fig. 5.

The XMI representation is re-generated at every run of the model compiler, which fact

introduces a complication that the generated file cannot be used in consistency checking as the

old version is already deleted and a new version is not yet present. It reduces the scope of usage

of this representation on internal state visualization during software execution.

.// GENERATING XMI KL for ALL COMPONENTS

.select many o_components from instances of C_C
 .// class of componets in xtUML metamodel has identifier C_C
.for each o_component in o_components
 <UML:Component name="${o_component.Name}"
xmi:id="${o_component.Id}">
 .select many ports related by o_component->C_PO[R4010]
 .if (not_empty ports)
 .for each port in ports
 .select many interfaces related by port->C_IR[R4016]->C_I[R4012]
 .for each interface in interfaces
 <UML:Interface name="${interface.Name}">
 .select many signals related by interface->C_EP[R4003]-
>C_AS[R4004]
 .for each signal in signals
 <UML:Signal name="${signal.Name}" xmi:id="${signal.Id}" >
 </UML:Signal>
 .end for
 .select many operations related by interface->C_EP[R4003]-
>C_IO[R4004]
 .for each operation in operations
 .select any returnType related by operation->S_DT[R4008]
 <UML:Operation name="${operation.Name}"
 returnType="${returnType.Name}" xmi:id="${operation.Id}">
 </UML:Operation>
 .end for
 </UML:Interface>
 .end for
 .end for
 .end if
 </UML:Component>
.end for
.// END OF GENERATING XMI KL for ALL COMPONENTS

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 17

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Fig. 5 Part of generated KL for the demo SwS in XMI format

4.3. Consistency Test Generation

Template for consistency test generation CTestII was implemented in OAL and one part of all

algorithms representing generating consistency test only for all components from COMPD is

described in Fig. 6.

<?xml version="1.0" encoding="UTF-8" ?>
<XMI version="1.4" xmlns:uml="http://schema.omg.org/spec/UML/2.1" xmlns:xmi="http://schema.omg.org/spec/XMI/2.1">
<XMI.header>
 <XMI.metamodel xmi.name="UML" xmi.version="2.1"/>
</XMI.header>

<XMI.content>
 <XMI:model xmi:type="uml:Model" name="Tablet" xmi:id="1">
 <UML:Component name="Battery" xmi:id="47">
 <UML:Interface name="BatteryInterface">
 <UML:Signal name="batteryUpdated" xmi:id="15" ></UML:Signal>
 <UML:Signal name="tabletOn" xmi:id="17" ></UML:Signal>
 <UML:Signal name="rechargedBattery" xmi:id="18" ></UML:Signal>
 </UML:Interface>
 </UML:Component>
 <UML:Component name="Car" xmi:id="127">
 <UML:Interface name="CarInterface">
 <UML:Signal name="connectToCar" xmi:id="20" ></UML:Signal>
 <UML:Signal name="disconnectFromCar" xmi:id="21" ></UML:Signal>
 <UML:Signal name="speedUpdated" xmi:id="22" ></UML:Signal>
 <UML:Signal name="fuelUpdated" xmi:id="24" ></UML:Signal>
 </UML:Interface>
 </UML:Component>
 <UML:Component name="GPS" xmi:id="235">
 <UML:Interface name="GPSInterface">
 <UML:Signal name="registerGPS" xmi:id="27" ></UML:Signal>
 <UML:Signal name="unregisterGPS" xmi:id="28" ></UML:Signal>
 <UML:Signal name="locationUpdated" xmi:id="29" ></UML:Signal>
 </UML:Interface>
 </UML:Component>
 <UML:Component name="MapData" xmi:id="350">
 <UML:Interface name="MapInterface">
 <UML:Signal name="registerMap" xmi:id="32" ></UML:Signal>
 <UML:Signal name="unregisterMap" xmi:id="33" ></UML:Signal>
 <UML:Signal name="mapPositionUpdated" xmi:id="34" ></UML:Signal>
 <UML:Signal name="getNewPosition" xmi:id="39" ></UML:Signal>
 </UML:Interface>
 </UML:Component>
 <UML:Component name="TabletCore" xmi:id="650">
 <UML:Interface name="CarInterface">
 <UML:Signal name="connectToCar" xmi:id="20" ></UML:Signal>
 <UML:Signal name="disconnectFromCar" xmi:id="21" ></UML:Signal>
 <UML:Signal name="speedUpdated" xmi:id="22" ></UML:Signal>
 <UML:Signal name="fuelUpdated" xmi:id="24" ></UML:Signal>
 </UML:Interface>
 <UML:Interface name="GPSInterface">
 <UML:Signal name="registerGPS" xmi:id="27" ></UML:Signal>
 <UML:Signal name="unregisterGPS" xmi:id="28" ></UML:Signal>
 <UML:Signal name="locationUpdated" xmi:id="29" ></UML:Signal>
 </UML:Interface>
 <UML:Interface name="BatteryInterface">
 <UML:Signal name="batteryUpdated" xmi:id="15" ></UML:Signal>
 <UML:Signal name="tabletOn" xmi:id="17" ></UML:Signal>
 <UML:Signal name="rechargedBattery" xmi:id="18" ></UML:Signal>
 </UML:Interface>
 <UML:Interface name="MapInterface">
 <UML:Signal name="registerMap" xmi:id="32" ></UML:Signal>
 <UML:Signal name="unregisterMap" xmi:id="33" ></UML:Signal>
 <UML:Signal name="mapPositionUpdated" xmi:id="34" ></UML:Signal>
 <UML:Signal name="getNewPosition" xmi:id="39" ></UML:Signal>
 </UML:Interface>
 <UML:Interface name="UserInterface">
 <UML:Signal name="turnOn" xmi:id="44" ></UML:Signal>
 <UML:Signal name="turnOff" xmi:id="45" ></UML:Signal>
 </UML:Interface>
 </UML:Component>
 <UML:Component name="User" xmi

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 18

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Inclusion of the template for consistency tests generation into the Model Compiler according

to Fig. 8 is realized with use of file consisting of these OAL statements:

Fig. 6 Part of OAL template for generating consistency tests CTestII for components from

COMPD (Rajnak, 2015)

Consistency tests (CTestII) are also generated by an OAL script. As we mentioned it above,

one can consider these tests as second and redundant version to XMI version of the KL. The

significant difference is that while the XMI format is useful during execution, the CTestII file

plays a significant role in software evolution. The test file is written in OAL as set of tests.

Execution of the test cases is implemented within the same frame as the generation of them,

using the same extension of the model compiler, the same language (OAL), the same logic of

automation. Fig. 6 included an example of the XMI format of the KL, next we present the

CTestII file belonging to the same project in Fig. 7. Note that both files share knowledge on

object attributes.

.include "${arc_path}/sk.tuke.dci.consistency.test-gen.main.arc"

.// GENERATING CONSISTENCY TEST for COMPONENTS

.select many old_components from instances of C_C

.for each old_component in old_components
 ..select any new_component from instances of C_C where (selected.Name == "${old_component.Name}")
..if (empty new_component)
 ..print "\nWARNING: Component '${old_component.Name}' has been changed or removed!"
 ..end if
.end for
..assign oldComponentFound = 0;
.assign i=0;
.select many old_components from instances of C_C
..select many new_components from instances of C_C
..for each new_component in new_components
 .for each old_component in old_components
 .if(i==0)
 ..if(new_component.Name == "${old_component.Name}")
 ..assign oldComponentFound = 1;
 .else
 ..elif (new_component.Name == "${old_component.Name}")
 ..assign oldComponentFound = 1;
 .end if
 .assign i=i+1;
 .end for
 ..end if
 ..if (oldComponentFound == 0)
 ..print "\nWARNING: New Component '$${new_component.Name}' Added!\n"
 ..end if
 ..assign oldComponentFound = 0;
..end for

.// END OF GENERATING CONSISTENCY TEST for COMPONENTS

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 19

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Fig. 7 Part of generated consistency test CTestII

.print "Testing consistency with last compiled version"

Testing consistency with last compiled version...

.print "CLASS DIAGRAM CONSISTENCY TEST START"

.//

 .select any new_component from instances of C_C where (selected.Name == "Battery")

 .if (empty new_component)

 .print "\nWARNING: Component 'Battery' has been changed or removed!"

 WARNING: Component 'Battery' has been changed or removed!

 .end if

 .select any new_component from instances of C_C where (selected.Name == "Car")

 .if (empty new_component)

 .print "\nWARNING: Component 'Car' has been changed or removed!"

 WARNING: Component 'Car' has been changed or removed!

 .end if

 .select any new_component from instances of C_C where (selected.Name == "GPS")

 .if (empty new_component)

 .print "\nWARNING: Component 'GPS' has been changed or removed!"

 WARNING: Component 'GPS' has been changed or removed!

 .end if

 .select any new_component from instances of C_C where (selected.Name == "MapData")

 .if (empty new_component)

 .print "\nWARNING: Component 'MapData' has been changed or removed!"

 WARNING: Component 'MapData' has been changed or removed!

 .end if

 .select any new_component from instances of C_C where (selected.Name == "TabletCore")

 .if (empty new_component)

 .print "\nWARNING: Component 'TabletCore' has been changed or removed!"

 WARNING: Component 'TabletCore' has been changed or removed!

 .end if

 .select any new_component from instances of C_C where (selected.Name == "User")

 .if (empty new_component)

 .print "\nWARNING: Component 'User' has been changed or removed!"

 WARNING: Component 'User' has been changed or removed!

 .end if

.assign oldComponentFound = 0;

.select many new_components from instances of C_C

.for each new_component in new_components

 .if(new_component.Name == "Battery")

 .assign oldComponentFound = 1;

 .elif (new_component.Name == "Car")

 .assign oldComponentFound = 1;

 .elif (new_component.Name == "GPS")

 .assign oldComponentFound = 1;

 .elif (new_component.Name == "MapData")

 .assign oldComponentFound = 1;

 .elif (new_component.Name == "TabletCore")

 .assign oldComponentFound = 1;

 .elif (new_component.Name == "User")

 .assign oldComponentFound = 1;

 .end if

 .if (oldComponentFound == 0)

 .print "\nWARNING: New Component '${new_component.Name}' Added!\n"

 WARNING: New Component '${new_component.Name}' Added!

 .end if

 .assign oldComponentFound = 0;

.end for

 .select any new_interface from instances of C_I where (selected.Name == "BatteryInterface")

 .if (empty new_interface)

 .print "\nWARNING: Interface 'BatteryInterface' has been changed or removed!"

 WARNING: Interface 'BatteryInterface' has been changed or removed!

 .else

 .select any new_signal related by new_interface->C_EP[R4003]->C_AS[R4004] where (selected.Name=="batteryUpdated")

 .if (empty new_signal)

 .print "\nWARNING: Signal 'batteryUpdated' in interface 'BatteryInterface' has been changed or removed!"

 WARNING: Signal 'batteryUpdated' in interface 'BatteryInterface' has been changed or removed!

 .end if

 .select any new_signal related by new_interface->C_EP[R4003]->C_AS[R4004] where (selected.Name=="tabletOn")

 .if (empty new_signal)

 .print "\nWARNING: Signal 'tabletOn' in interface 'BatteryInterface' has been changed or removed!"

 WARNING: Signal 'tabletOn' in interface 'BatteryInterface' has been changed or removed!

 .end if

 .select any new_signal related by new_interface->C_EP[R4003]->C_AS[R4004] where (selected.Name=="rechargedBattery")

 .if (empty new_signal)

 .print "\nWARNING: Signal 'rechargedBattery' in interface 'BatteryInterface' has been changed or removed!"

 WARNING: Signal 'rechargedBattery' in interface 'BatteryInterface' has been changed or removed!

 .end if

 .end if

 .select any new_interface from instances of C_I where (selected.Name == "CarInterface")

 .if (empty new_interface)

 .print "\nWARNING: Interface 'CarInterface' has been changed or removed!"

 WARNING: Interface 'CarInterface' has been changed or removed!

 .else

 .select any new_signal related by new_interface->C_EP[R4003]->C_AS[R4004] where (selected.Name=="connectToCar")

 .if (empty new_signal)

 .print "\nWARNING: Signal 'connectToCar' in interface 'CarInterface' has been changed or removed!"

 WARNING: Signal 'connectToCar' in interface 'CarInterface' has been changed or removed!

 .end if

 .select any new_signal related by new_interface->C_EP[R4003]->C_AS[R4004] where (selected.Name=="disconnectFromCar")

 .if (empty new_signal)

 .print "\nWARNING: Signal 'disconnectFromCar' in interface 'CarInterface' has been changed or removed!"

 WARNING: Signal 'disconnectFromCar' in interface 'CarInterface' has been changed or removed!

 .end if

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 20

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Fig. 8 Experimental ARSA implementation with KL on source level with use of BridgePoint

and xtUML

4.4. Consistency Test Execution

Result of consistency test generation CTestII is implemented in OAL and is executed

automatically when the MDG processes take place. I.e., when a new version of the system is

being built from the models, the results of the generation are being confronted with the KL

storing the knowledge about the previous version of the system (OAL representation of this

application logic is kept in the file as presented in Fig. 10). An example output of a consistency

check is presented in Fig. 9.

MDMake

Extended Compiling& Linking

with MDA Tools

dataflow

dependency

MDM

4a

3a

7b

6a

Analysis/Design

CASE System

Application PDb

xtUML models & OAL

action semantics

– sources of critical

knowledge

Target

Application

MDCom

xtUML Model Compilers

translation rules target platform

template files

MDMod

3b

4b

6b

7a

2a

2b external

components,

libraries,

services
Report

from

CTestII

 CTestII KL

KL templates

OAL

template for

generating

consistency

tests CTestII

OAL

template for

generating

KL from

COMPD

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 21

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Fig. 9 Usage of KL during consistency checking

Tue Dec 13 13:02:45 2016

xtumlmc_build -home C:/BridgePoint_v5.3.4/BridgePoint/eclipse/plugins/org.xtuml.bp.mc.c.source_5.3.4/ -l3s -e -d code_generation

-O ../../src/

Upgrading translation workspace: code_generation

Enabling detection of empty handles for component(s) *.

Action statement tracing enabled for component Battery.

Action statement tracing enabled for component Car.

Action statement tracing enabled for component GPS.

Action statement tracing enabled for component MapData.

Action statement tracing enabled for component TabletCore.

Action statement tracing enabled for component User.

Enabling state transition tracing for component(s) *.

Analyzing model and making optimizations....

22 attributes read

21 attributes written

translating control statements

translating other statements

rolling up statements into action bodies

done translating statements

NOTE: Domain code 0 allocated for this import.

NOTE: The domain code you have entered has already been used/allocated, but will allow this import to proceed normally.

sys.arc: 9: INFO: starting Tue Dec 13 13:02:46 2016

sk.tuke.dci.consistency.arc: 1: INFO:

########## MODEL COMPILER CONSISTENCY TESTING EXTENSION LOADED ##########

Created by Branislav Rajnak v1.0 (c)2015

Modified by Csaba Szabo v1.1 (c)2016

Modified by Csaba Szabo and Veronika Szaboova v1.2 (c)2016

sk.tuke.dci.consistency.arc: 7: INFO: File '../../consistency-tests/sk.tuke.dci.consistency.output.txt' UNCHANGED.

sk.tuke.dci.consistency.arc: 11: INFO: File '../../consistency-tests/sk.tuke.dci.consistency.test.main.arc' REPLACED.

sk.tuke.dci.consistency.xmi-gen.main.arc: 1: INFO: Class diagram XML generation started.

sk.tuke.dci.consistency.xmi-gen.main.arc: 115: INFO: File 'Tablet.xmi' CREATED.

sys.arc: 92: INFO: System level marking complete.

q.domain.bridges.arc: 17: INFO: File '_ch/LOG_bridge.h' CREATED.

q.domain.bridges.arc: 23: INFO: File '_ch/LOG_bridge.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/TabletCore_TrackPoint_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/TabletCore_TrackPoint_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/TabletCore_TabletCore_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/TabletCore_TabletCore_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/MapData_MapHandler_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/MapData_MapHandler_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/MapData_EachMap_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/MapData_EachMap_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/GPS_GPS_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/GPS_GPS_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/Car_Car_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/Car_Car_class.c' CREATED.

q.classes.arc: 19: INFO: File '_ch/Battery_Battery_class.h' CREATED.

q.classes.arc: 24: INFO: File '_ch/Battery_Battery_class.c' CREATED.

q.components.arc: 30: INFO: File '_ch/User.h' CREATED.

q.components.arc: 87: INFO: File '_ch/User.c' CREATED.

q.components.arc: 30: INFO: File '_ch/TabletCore.h' CREATED.

q.components.arc: 74: INFO: File '_ch/TabletCore_classes.h' CREATED.

q.components.arc: 87: INFO: File '_ch/TabletCore.c' CREATED.

q.components.arc: 30: INFO: File '_ch/MapData.h' CREATED.

q.components.arc: 74: INFO: File '_ch/MapData_classes.h' CREATED.

q.components.arc: 87: INFO: File '_ch/MapData.c' CREATED.

q.components.arc: 30: INFO: File '_ch/GPS.h' CREATED.

q.components.arc: 74: INFO: File '_ch/GPS_classes.h' CREATED.

q.components.arc: 87: INFO: File '_ch/GPS.c' CREATED.

q.components.arc: 30: INFO: File '_ch/Car.h' CREATED.

q.components.arc: 74: INFO: File '_ch/Car_classes.h' CREATED.

q.components.arc: 87: INFO: File '_ch/Car.c' CREATED.

q.components.arc: 30: INFO: File '_ch/Battery.h' CREATED.

q.components.arc: 74: INFO: File '_ch/Battery_classes.h' CREATED.

q.components.arc: 87: INFO: File '_ch/Battery.c' CREATED.

sys.arc: 205: INFO: File '_ch/Tablet_sys_main.c' CREATED.

sys.arc: 264: INFO: File '_ch/sys_xtuml.h' CREATED.

sys.arc: 271: INFO: File '_ch/sys_xtuml.c' CREATED.

sys.arc: 297: INFO: File '_ch/Tablet_sys_types.h' CREATED.

sys.arc: 303: INFO: File '_ch/sys_user_co.h' CREATED.

sys.arc: 309: INFO: File '_ch/sys_user_co.c' CREATED.

sys.arc: 316: INFO: File '_ch/TIM_bridge.h' CREATED.

sys.arc: 322: INFO: File '_ch/TIM_bridge.c' CREATED.

sys.arc: 340: INFO: ending Tue Dec 13 13:02:47 2016

Code generation complete.

Tue Dec 13 13:02:47 2016

Testing consistency with last compiled version...

 Checking class 'Battery' with new model

 Checking class 'Car' with new model

 Checking class 'GPS' with new model

 Checking class 'EachMap' with new model

 Checking class 'MapHandler' with new model

 Checking class 'TabletCore' with new model

 Checking class 'TrackPoint' with new model

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 22

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Fig. 10 Autoreflexion logic including KL actualization at test and executable level of

the system

4.5. Evaluation of metrics for reliability and efficiency of software modification

We measured reliability and efficiency in our experimental ARSA implementations according

to the formulas (1) and (2). In our experiments, we used specific SwS, which implemented the

following task:

A mobile application for car driving navigation, which automatically starts displaying

gasoline/petrol pumps when the fuel level decreases to critical and, which might automatically

turn off selected features when the battery level decreases to selected critical levels (levels are

defined depending on the features).

Our measurement method was simple. We implemented an incremental development life cycle

(Khan et al. 2015) including steps back to check reliability of the procedures for maintaining

the KL in ARSA. Table 1 summarizes our results.

Based on the results presented in Tab. 1, we can evaluate the reliability metrics for each change

type category applying formula (1). The average of the calculated reliabilities is 65.90%.

Where, we calculated e based on the number of lines of code (LOC) that needed modification.

.print "\n########## MODEL COMPILER CONSISTENCY TESTING EXTENSION LOADED ##########\n"

.//

.// LOAD CONSISTENCY TESTS IF AVAILABLE

.//

.//

.include "../../consistency-tests/sk.tuke.dci.consistency.test.main.arc"

.emit to file "../../consistency-tests/sk.tuke.dci.consistency.output.txt"

.//

.//

.include "${arc_path}/sk.tuke.dci.consistency.test-gen.main.arc"

.emit to file "../../consistency-tests/sk.tuke.dci.consistency.test.main.arc"

.//

.//XMI generation from new models

.//

.//COMPONENT CLASSES

.include "${arc_path}/sk.tuke.dci.consistency.xmi-gen.main.arc"

.//

.//

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 23

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

We used the scale: 0-no change, 1-very small 1-5 LOC. 2-small 6-10 LOC, 3-medium 11-15

LOC, 4-large 16-20 LOC, and 5-very large with more than 20 LOC).

Table 1: Measurement results of experimental ARSA implementation

Task description Nm Nam Nmm Nni

Change in use-case diagram (non-critical model): rename use-case package 9 0 9 6

Change in the package/component diagrams (critical model): rename package 18 17 1 0

Change in the package/component diagrams (critical model): change interfaces 20 8 12 0

Change in the class state machines (critical model): rename actions or states 40 21 19 19

Change in the class state machines (critical model): change flow 19 19 0 14

Change in the sequence diagrams (critical model): rename instances 6 6 0 0

Change in the sequence diagrams (critical model): change messages 11 11 0 14

Change in the class diagrams (critical model): change interfaces 20 16 4 8

Change in the class diagrams (critical model): change data types 10 0 10 2

Change in the class diagrams (critical model): change external entities 18 15 3 4

Efficiency of software process of modification of SwS (Em) we simply calculated based on

formula (2) for the categories of changes, and then we achieved the average value for the

efficiency as 65.03%.

4.6. Related Work

Presented approach (Fritz et al., 2014) for the maintaining and the use of the knowledge about

implementing code of SwS for the effective maintenance of SwS is based on developer's

individual knowledge of the code and their changes connected to this code. This knowledge is

usually low-level knowledge of programmers based on the knowledge about the programming

language and the requirements for the system implementation. This knowledge can be very

useful but maintaining this kind of knowledge in consistency with code needs interactive

changes with probability of human mistake.

Unlike about mentioned approach our solution based on the design models stored in KL in

ARSA can use with advantage reversibility of abstract models and equivalent code (or template

of code) for eliminating human mistake in coding changes and describing this change in the

process of maintaining. Advantage for better understanding of code of SwS with ARSA can be

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 24

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

also high-level abstract knowledge about SwS defined by the critical design models of the

architecture, structure and behavior of SwS stored in KL and connected to the parts of the code.

Combining individual knowledge of the code (Fritz et al. 2014) and the critical abstract models

of SwS in the integrated knowledge layer in the architecture ARSA can be way how to do

effective sustainability of SwS.

 Conclusions

We used our mobile application example to demonstrate novel architecture ARSA

implementation, with emphasis on the KL (XMI format implementation). The KL was used to

report the changes in the SwS as an extension to the built-in tracking feature of the used

BridgePoint utility. The counts of changes divided into change type categories were used to

determine measurement values for the formulas defined in the introductory part of the paper.

From the point of evaluation of our goals mentioned in the introduction of the paper:

1. We have used model transformations based on MDA approach in KL Generator implemented

in OAL for creating KL consisting of critical models of example SwS (component diagram,

class diagram, state transition diagram).

2. We have used formal languages XMI, xtUML, OAL and open-source CASE tool BridgePoint

for implementing of ARSA.

3. We have proposed and used metrics -formulas (1), (2) described in section 2.6 - to measure

of reliability and efficiency of modification of our example software. Result of use of these

metrics are in Table 1. These software maintenance metrics have also more general use for

measuring reliability and efficiency of modification of software.

From the point of evaluation of our research questions mentioned in the introduction of the

paper, our experiment did not reveal any necessary intervene into ARSA methodology to

support the development of self-healing systems, by contrast, we found that modeling and

generation of self-healing system architecture is simple using the methodology of ARSA (it is

not easier without the same as ARSA). Both the substance and implementation of the navigation

device have not required intervention by the proposed system because of the use of ARSA. It

was only necessary to introduce more detail into each model including OAL scripts for

procedural logic – action semantics objects in order to generate the target system run without

refilling the generated code before the actual translation. Amendment was needed only for the

implementation of communication with sensors of fuel and batteries.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 25

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

We can conclude that the reliability and the efficiency of the modifications are various, and

they depend on the type of the applied change.

Discovered benefits of ARSA are:

- easy to use, it needs one-time integration and addition of a new directory to the project

workspace,

- no real increase in development workload as it is integrated and autonomous,

- in addition to the original tool, it adds reporting interface on changes made since the last

generation of the SwS.

Discovered disadvantages are:

- severe additional work for each starting project,

- much more generator output, which might be a problem when using automated

reflection tools (these would require severe modifications or extensions).

Further directions of our research include a series of larger case studies to ensure ARSA

applicability, inclusion of another UML models to extend the KL (and the scope of the critical

models). With the extensions, new consistency testing strategies might be needed as well. We

will also focus on these consistency-checking mechanisms.

References

Bergmann, G. et al. (2015). VIATRA 3: A Reactive Model Transformation Platform, Theory

and Practice of Model Transformations, Volume 9152 of the series Lecture Notes in Computer

Science, pp. 101-110, ISBN: 978-3-319-21154-1 (Print) 978-3-319-21155-8 (Online).

Bocciarelli, P. et al. (2015). A Model-driven Framework for Distributed Simulation of

Autonomous Systems. In: SpringSim-TMS/DEVS’15 Proc. of the Symp. on Theory of

Modeling and Simulation: DEVS Integrative Modeling and Simulation Symp., April 12-15,

2015, Alexandria, VA, USA, Society for Modeling and Simulation International (SCS), San

Diego, CA, USA, pp. 213-220, ISBN: 978-1-5108-0105-9.

Davis, J. E. and Chang, E. (2011). Lifecycle and generational application of automated updates

to MDA based enterprise information systems. SoICT 2011. Proc. of the 2nd Symposium on

Information and Communication Technology, 2011 Hanoi, Vietnam. ISBN 978-1-14503-0880-

9/11/10.

Dévai, G. et al. (2014). Textual, executable, translatable UML, In: 14th International Workshop

on OCL and Textual Modeling (workshop of the ACM/IEEE 17th International Conference on

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 26

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Model Driven Engineering Languages and Systems MODELS 2014), Sep 28 – Oct 3, 2014,

Valencia, Spain.

Dukan, P. (2013). Cloud-based smart metering system. In 2013 IEEE 14th International

Symposium on Computational Intelligence and Informatics, pp. 499–502.

Edwards, C. and Gruner, S. (2013). A new tool for URDAD to Java EE EJB Transformations.

In: SAICSIT’13 Proc. of the South African Institute for Computer Scientists and Information

Technologies Conf., ACM, pp. 144-153, ISBN: 978-1-4503-2112-9.

France, R. and Rumpe, B. (2007). Model-Driven Development of Complex Software: A

Research Roadmap, In: Future of Software Engineering 2007 at 29th International Conference

on Software Engineering (ICSE), Minneapolis, pp. 37-54, IEEE, May 19-27, 2007.

Fritz, T. et al. (2014). Degree-of-knowledge: Modeling a developer's knowledge of code. ACM

Transactions on Software Engineering and Methodology (TOSEM). Volume 23 Issue 2, March

2014. ACM New York, NY, USA. doi:10.1145/2512207.

Gregorics, B. et al. (2015). Textual Diagram Layout Language and Visualization Algorithm,

In: ACM/IEEE 18th International Conference on Model Driven Engineering Languages and

Systems, MODELS 2015, Ottawa, ON, Canada, Sep 30 – Oct 2, 2015.

Haeubl, Ch. Et al. (2014). Trace Transitioning and Exception Handling in a Trace-Based JIT

Compiler for Java. In ACM TRANSACTIONS ON ARCHITECTURE AND CODE

OPTIMIZATION, Volume: 11, Issue: 1, Article Number: 6, DOI: 10.1145/2579673. ISSN:

1544-3566, eISSN: 1544-3973.

Havlice, Z. (2009). Knowledge-based Software Engineering. In: Computer Science and

Technology Research Survey, Vol. 4, 2009, pp. 5-14, Technical University of Kosice, Faculty

of Electrical Engineering and Informatics, Kosice, Slovakia.

Havlice, Z. (2013). Auto-Reflexive Software Architecture with Layer of Knowledge Based on

UML Models. In: International Review on Computers and Software (IRECOS). Vol. 8, no. 8

(2013), p. 1814-1821. -ISSN 1828-6003.

Havlice, Z. at al. (2014). Knowledge-Layer Integration into Information System. In: Computer

Science and Technology Research Survey: Volume 7. - Košice: TU, 2014 S. 62-67. - ISBN

978-80-553-1857-8.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 27

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Hog, Ch. E. et al. (2011). AWS-WSDL: A WSDL Extension to Support Adaptive Web Service.

In: iiWAS2011, Prof. of the 13th Internat. Conf. on Information Integration and Web-based

Applications and Services, ACM, pp. 477-480, ISBN: 978-1-4503-0784-0.

Jouault, F. and Kurtev, I. (2006). Transforming models with ATL. In MoDELS'05 Proceedings

of the 2005 international conference on Satellite Events at the MoDELS 2005 Conference.

Springer-Verlag Berlin, Heidelberg, 2006, pp. 128–138, ISBN:3-540-31780-5, 978-3-540-

31780-7 doi>10.1007/11663430_14.

Jouault, F. et al. (2008). ATL: A model transformation tool. Sciences of Computer

Programming, Elseiver, Vol. 72, Issues 1-2, June 2008, pp 31–39, ISSN 0167-6423.

Jouault, F. et al. (2014). fUML as an assembly Language for MDA. MiSE 2014 Proc. of the 6th

Intern. Workshop on Modeling in Software Engineering, ACM, ISBM 978-1-4503-2849-4.

Khan, T. et al. (2013). eCITY: A Tool to Track Software Structural Changes using an Evolving

City. In 2013 29TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE

MAINTENANCE (ICSM), pp. 492-495. DOI: 10.1109/ICSM.2013.80.

Khan, T. et al. (2015). An Interactive Approach for Inspecting Software System Measurements.

In 15th IFIP TC.13 International Conference on Human-Computer Interaction (INTERACT),

Lecture Notes in Computer Science Volume: 9298, pp. 1-8, DOI: 10.1007/978-3-319-22698-

9_1.

Kovari, A. (2020). Study of Algorithmic Problem-Solving and Executive Function. Acta

Polytechnica Hungarica, 17(9), 241–256.

Kunstar, J. et al. (2009). Principles of model utilization in software system life cycle. In: Acta

Electrotechnica et Informatica, Vol. 9, No. 3, Technical University of Kosice, Faculty of

Electrical Engineering and Informatics. Kosice, 2009, pp. 48-53, ISSN 1335-8243.

Kunstar, J. et al. (2009a). The use of development models for improvement of software

maintenance. In: Acta Universitatis Sapientiae, Informatica. Vol. 1, no. 1 (2009), p. 45-52. -

ISSN 1844-6086.

Lahiani N. and Bennouar, D. (2015). A Model Driven Approach to Derive e-Learning

Applications in Software Product Line. In: IPAC’15 Prof. of the Internat. Conf. on Intelligent

Information Processing, Security and Advanced Communication, ACM, Article No. 78, 6 p.,

ISBN: 978-1-4503-3458-7.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 28

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Li, Z. et al. (2013). Application of knowledge-based approaches in software architecture: A

systematic mapping study. Information and Software Technology 55 (2013), pp. 777-794,

ISSN: 0950-5849.

Liang, P. and Avgeriou, P. (2009). Tools and technologies for architecture knowledge

management. In: Ali Babar, M., Dingsøyr, T., Lago, P., H. van der Vliet, H. (Eds.); Software

Architecture Knowledge Management, Springer, Berlin Heidelberg, 2009, pp. 91–111, ISBN

978-3-642-02374-3.

Maalal S. and Addou, M. (2011). A new approach of designing Multi-Agent Systems, With a

practical sample, (IJACSA) International Journal of Advanced Computer Science and

Applications, Vol. 2, No. 11, 2011, ISSN: 2156-5570 (Online), 2158-107X (Print), DOI:

10.14569/issn.2156-5570.

Mellor, S. J. and Balcer, M. J. (2002). Executable UML: A Foundation for Model driven

Architecture. Indianapolis 2002, ISBN 0-201-74809-5, 385 p.

Mens, T. and Van Gorp, P. (2006). A taxonomy of model transformation. Electronic Notes in

Theoretical Computer Science, Elsevier Science Publishers B. V. Amsterdam, The Netherlands,

vol. 152, pp. 125–142, 2006, doi>10.1016/j.entcs.2005.10.021.

Mezghani E. et al. (2013). A Model Driven Methodology for enabling Autonomic

Reconfiguration of Service Oriented Architecture. In: SAC’13 Prof. of the 28th Annual ACM

Symposium on Applied Computing, ACM, pp. 1772-1773, ISBN: 978-1-4503-1656-9.

OAL. (2015). Object Action Language Reference Manual. Retrieved November 28,2015 from

http://www.ooatool.com/docs/OAL08.pdf

OMG. (2015). MDA - The Architecture of Choice for a Changing World. Retrieved November

28,2015 from http://omg.org/mda

Polák, M. and Holubová, I. (2015). Advanced REST API Management and Evolution Using

MDA. DChanges 2015, Proc. of the 3rd Inernat. Workshop on Document Changes: modeling,

storage and visualization. Lausanne, Switzerland, pp.11-18. ISBN 978-1-4503-3714-4/15/09.

Porkolab, Z. and Sinkovics, A. (2011). Domain-specific Language Integration with Compile-

time Parser Generator Library. In ACM SIGPLAN NOTICES, Volume: 46, Issue: 2, pp. 137-

146, DOI: 10.1145/1942788.1868315. ISSN: 0362-1340.

https://doi.org/10.24368/jates310

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 29

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Rajnak, B. (2015). Use of MDA Principles and MDG Technology in Software Life Cycle.

Diploma thesis. 2015. Technical University of Kosice, Faculty of Electrical Engineering and

Informatics, Kosice, Slovakia.

Robillard, M. P. (2016). Sustainable Software Design. FSE 2016 Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering. Pages 920-

923. Seattle, WA, USA — November 13 - 18, 2016. ACM New York, NY, USA. ISBN: 978-

1-4503-4218-6. doi:10.1145/2950290.2983983.

Rodriguez-Echevaria et al. (2022). Suggesting model transformation repairs for rule-based

languages using a contract-based testing approach. Software and Systems Modeling (SoSyM)

Volume 21Issue 1Feb 2022 pp 81–112https://doi.org/10.1007/s10270-021-00891-0

ROX Software. (2005): MC-3020 Model Compiler. User's Guide. Escher Code Generator.

Mentor Graphics Corporation, August 2005. Retrieved November 28,2015 from

http://roxsoftware.com/ug/

Sarjoughian, H. S. et al. (2015). Behavioral DEVS Modeling. In Prof. of the 2015 Winter

Simulation Conference, IEEE, pp. 2788-2799, ISBN: 978-1-4673-9743-8.

Sinkovics, A. and Porkolab, Z. (2013). Implementing monads for C plus plus template

metaprograms. In SCIENCE OF COMPUTER PROGRAMMING, Volume: 78, Issue: 9, pp.

1600-1621, DOI: 10.1016/j.scico.2013.01.002. ISSN: 0167-6423.

Tang A. et al. (2010). A comparative study of architecture knowledge management tools,

Journal of Systems and Software, 83 (2010) 352–370, ISSN: 0164-1212.

Wuerthinger, T. et al. (2011). Safe and Atomic Run-time Code Evolution for Java and its

Application to Dynamic AOP. In ACM SIGPLAN NOTICES, Volume: 46, Issue: 10, pp. 825-

844. DOI: 10.1145/2076021.2048129, ISSN: 0362-1340.

Weins, D., Iftikhar, U. M. (2022). Providing Assurances for Self-Adaptation in a Mobile Digital

Storytelling Application Using ActivFORMS. ACM Transactions on Software Engineering and

Methodology. https://doi.org/10.1145/3522585

xtUML.(2015). BridgePoint. Retrieved November 28,2015 from https://xtuml.org

About Authors

https://doi.org/10.24368/jates310
https://dl.acm.org/toc/spssm/2022/21/1
https://dl.acm.org/toc/spssm/2022/21/1
https://dl.acm.org/toc/spssm/2022/21/1
https://doi.org/10.1007/s10270-021-00891-0
https://dl.acm.org/toc/tosem/justaccepted
https://dl.acm.org/toc/tosem/justaccepted
https://doi.org/10.1145/3522585

Vol. 12, No. 2, 2022 pp. 1-30 https://doi.org/10.24368/jates310 30

jATES: Journal of Applied Technical and Educational Sciences License: CC BY 4.0

Zdeněk HAVLICE received his M. Sc. from Technical University of Košice, Slovakia in 1982

and PhD from Technical University of Košice, Slovakia in 1989. He is associated professor at

the Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Slovakia. His research interests include methods,

tools and methodology of analysis and design of software systems, use of knowledge in

software processes and architectures, modeling and prototyping of software systems, CASE

systems.

Veronika SZABÓOVÁ received her M. Sc. from Technical University of Košice, Slovakia

in 2012 and PhD from Technical University of Košice, Slovakia in 2016. She is a software

developer at R-SYS s.r.o., Trenčín, Slovakia – Košice branch office. Her research interests

include autonomic computing, software design and component-based software development for

the web, especially using progressive technologies such as ReactJS with TypeScript.

Branislav MADOŠ received his M. Sc. from Technical University of Košice, Slovakia in 2006

and PhD from Technical University of Košice, Slovakia in 2009. He is an associated professor

at the Department of Computers and Informatics, Faculty of Electrical Engineering and

Informatics, Technical University of Košice, Slovakia. His research interests include parallel

computer architectures and architectures of computers with data driven computational model.

https://doi.org/10.24368/jates310

